Cherry Picking Programming Activity

Subject Area(s) Problem Solving
Associated Unit Scratch computer programming
Associated Lesson None
Activity Title Scratch Cherry Picker Programming Activity
Header
Grade Level 6 (5-7)
Grade Level 6 (5-7)
Activity Dependency None
Time Required Two, 30 minute classes
Group Size 1
Expendable Cost per Group $0

Summary

In this activity, students will use the Scratch computer programming environment available for free download from MIT. The objective is for students understand the connection between “looping,” a common computer programming technique for encoding an action multiple times, and multiplication in context, an arithmetic technique as applied to a problem in the real world. The higher level objective is for students to strengthen their logical and mathematical reasoning skills while gaining some proficiency with computer programming and exposure to the career choice of computer science.

Students will receive a working “Cherry Picker” program, as depicted in the screen shot. The problem is as follows:

-- the cherry picker can jump and pick 8 cherries at a time
-- the cherry picker’s basket can only hold 100 cherries
-- how many times can the cherry picker jump without overflowing his basket??

The point is for students to visualize multiplication/division and when to round up/down to the nearest integer. In other words, the cherry picker can only jump 9 times without overflowing his basket.

The Scratch programming environment allows children to build computer programs using colorful, easy-to-understand building blocks much like Legos that can be dragged and dropped onto the page.

Students will receive a working but “buggy” program in which the cherry picker is “looped” to jump to the tree too many times, thus overflowing his basket as shown in the picture above. The
students will have the job that a real computer programmer often has, to “debug” the program by changing the number of times that the jumping activity is looped.

Evaluation and discussion is an important part of this activity. The activity will be followed by a discussion of how the students figured out how many times the cherry picker should have jumped (counting?? Subtracing?? Dividing??) and how they were able to fix the program. There will also be a discussion of how “looping,” whether in a computer program or in real life is just like multiplying and rounding in the appropriate direction. (e.g. suppose the students have a 4-1/2 day week at school. How many times to the students have to get up and get dressed for school? How many times do they pass through the door of the school?)

Engineering Connection

Students will be doing the job of a computer scientist or computer engineer – “debugging” a computer program.

Keywords
Computer, Computer programming, computer science, technology, computer-aided instruction, mathematical reasoning, Scratch

Educational Standards (PA)
- Science: Technological Devices 3.7 (A. Tools, C. Computer Software)
- Math: Mathematical Reasoning and Connections 2.4

Pre-Requisite Knowledge
None

Learning Objectives
After this lesson, students should be able to:
- Explain what a loop in computer programming does
- Explain how a loop in computer programming is like multiplication in math
- Demonstrate knowledge about when to round a number up or down, depending on the context of the problem

Materials List
Each group needs:
- A computer with the Scratch programming environment installed

Each class needs:
- A projector for showing the image on a large screen

Introduction / Motivation
There is so much in your school, play, and home life that would not be possible without computers. Imagine not having any computer generated graphics in the movies. No *Batman*?
No *Finding Nemo*? No *Transformers*? Unthinkable! Imagine life without calculators. Would we use an abacus? Our fingers? Paper and pencil?

Computer programs are made by people just like us who understand how to tell a computer what to do in language that the computer understands. The instructions have to be short and very, very simple. How would we tell a computer to find the lunchroom if it didn’t have “eyes?”

Computer programs use a lot of the logic and repeated instructions that we use every day and just don’t realize it. For example, how do you decide to take an umbrella? (“If it is raining, or if my Mom tells me that it might rain, then I take an umbrella. Else, I leave the umbrella at home.”) How do know how many shoes to put on? (“For each foot, put on one shoe.”) You already use the everyday logic that is necessary to tell a computer how to do it. In this activity, we will build an animated scene using computer language.

Vocabulary / Definitions

<table>
<thead>
<tr>
<th>Word</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer science</td>
<td>A field of study based on information storage and processing systems including hardware, software, basic design principles, and user requirements.</td>
</tr>
<tr>
<td>Computer programming</td>
<td>Creating a sequence of instructions that cause the computer to do something</td>
</tr>
<tr>
<td>Looping</td>
<td>Executing the same set of instructions a fixed number of times OR until a desired outcome is achieved</td>
</tr>
<tr>
<td>Debug</td>
<td>To find and remove errors in a computer program</td>
</tr>
<tr>
<td>Rounding</td>
<td>A method of approximating a number</td>
</tr>
<tr>
<td>Integer</td>
<td>A whole number</td>
</tr>
</tbody>
</table>

Procedure

Background

Because all of the Drexel instructors for this activity are in some field of computing, talk briefly about our work, how we became interested in it, and why we enjoy it. Talk about all the great places (exotic conference locations, away to college) that our studies have taken us. Close with some statements about how the field of computing is changing rapidly as we see it, and all the opportunities for the students in their future (gaming, movie special effects, satellite programming, military operations, etc).

Before the Activity

Define the vocabulary words and then discuss how the students will take on the job of a computer programmer for this activity.

With the Students

1. Explain that they will be given a working, but “buggy” program in which the cherry picker’s basket overflows. Point them in the direction to find the bug, to try to identify portions of the code that instruct the cherry picker to jump a repeated number of times.

 Variables you will need:
Here is the code to provide the students:

```
when flag clicked
set cherries to 0
go to x: -100 y: 35
think "Mmm... I'm in the mood for some cherries." for 4 secs
think "I can pick 8 cherries each time I jump." for 4 secs
think "My basket holds 100 cherries." for 4 secs
think "How many times can I jump without overflowing my basket?" for 5 secs
repeat 15
  point in direction 90
  glide 4 secs to x: 9 y: 159
  if touching edge?
    wait 2 secs
    change cherries by 9
  glide 1 secs to x: -100 y: -35
```
2. Let them experiment with the code that is there, reminding them that there is always the original version to return to if they modify the code beyond their liking (e.g. REMEMBER TO HAVE THE STUDENTS SAVE THE PROGRAM UNDER THEIR OWN NAME SO THERE IS ALWAYS AN ORIGINAL VERSION TO RETURN TO).

3. After 30 minutes playing with the program, find out who was able to correctly modify the code and find out how they identified the correct portion of the code, and how they figured out the number of times to loop the cherry picking action. Also, ask the students who did NOT figure it what they had trouble with.

4. Discuss how looping in computer programs is like multiplication. Give the example cited in the summary above to start a discussion of how sometimes it is appropriate to round up to the nearest integer, and sometimes appropriate to round down.

5. Review the mathematics lesson the children have just learned – make the connection that looped operations multiply the same task a certain number of times, rather than writing the same instructions over and over, like addition. Review the vocabulary and congratulate the students on becoming young computer programmers.

Safety Issues
• None

Troubleshooting Tips
If the students get themselves into a code modification that will not run, if you have the knowledge to help them debug it, then do so, if not, tell the student to return to the original version of the code and start over.

Investigating Questions
What kinds of toys and entertainment do computer programmers have a role in? What would our life be like without computer programming and computer scientists? For how many years has the computer been available for everyday household use? What did the first computers look like?

Assessment

Pre-Activity Assessment
Scratch programming project pre-test on vocabulary

Activity Embedded Assessment
Are the students able to identify the code artifact of interest?

Post-Activity Assessment
Evaluate the students according to your own rubric on the following questions. Were the students able to correctly modify the program, and did they use an inefficient method (counting)
or an efficient method (dividing or multiplying) of arriving at the correct number of times to loop the program?

Activity Extensions
Let the students create their own program, any activity that involves looped behavior either a finite number of times or until some condition is met. There is ample room for the students creativity with the Scratch environment.

URL
MIT’s website for the free Scratch computer programming environment: http://scratch.mit.edu/download

Owner
Drexel University GK-12 Program

Contributors
Dara Kusic, Quincy Brown, Bill Mongan, Elaine Gabarine

Copyright
Copyright 2007 Drexel University GK12 Program. Reproduction permission is granted for non-profit educational use

Version: Mar 2007